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Hyper-X Introduction

• Goal: To validate, in flight, propulsion and related
technologies for air-breathing hypersonic aircraft.

• Product: Two vehicles capable of Mach 7 and one
vehicle capable of Mach 10.

• Schedule: First Mach 7 flight in late 2000.
• Payoff: Increased payload capacities and reduced

costs for future vehicles by eliminating on-board
oxygen fuel requirements.
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Hyper-X Vehicle and Booster on B-52
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Hyper-X During Pegasus Boost



Nonlinear Thermal/Structural Analysis of Hypersonic Vehicle Hot Structures

NASA LaRC/Lindell/Amundsen/05-18-007

Hyper-X Separating for Free Flight
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Hyper-X Engine Test
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Hyper-X Flight Hardware
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Hyper-X Analysis Challenges

• Hypersonic flight introduces extreme heat loads
into vehicle leading edges (wings, tails, and nose).

• High temperature materials and coatings are
required to distribute heat and carry resulting loads.

• Accurate generation and incorporation of heat loads
requires tight integration between aeroheating
analysis, thermal analysis, and structural analysis.

• Loading conditions require nonlinear analysis with
temperature-dependent material properties.
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Aero-Thermo-Structural Analysis Process
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Aero-Thermo-Structural Analysis Process

• Design in Pro/Engineer
• Aeroheating analysis in SHABP from IGES geometry
• Import Pro/E model directly to MSC/PATRAN
• Thermal analysis in MSC/PATRAN Thermal

– Less manual model development due to geometry import
– Include aerodynamic heating and pressure loads from SHABP

• Different aeroheating and thermal meshes can be utilized
• Extensive FORTRAN in PATRAN Thermal to interpolate aeroheating

over both time and 3D space

– Stagnation point heating done using Fay-Riddell
– Iteration between thermal and aeroheating to capture skin

temperature

• Structural analysis in MSC/NASTRAN
– Less manual model building due to sharing with thermal analyst
– Different thermal and structural meshes can be utilized
– Uses temperatures interpolated directly from thermal model
– Nonlinear static analysis performed at discrete trajectory points

under thermal and mechanical loads
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Thermal Analysis Methods
• Properties

– All properties done as temperature-dependent
– 3D orthotropic where needed (on C-C)

• Aeroheating fluxes
– On surfaces, aerodynamic heating from SHABP

• dependent on Mach, altitude, skin temperature, geometry

– Interpolated in time and space onto PATRAN model
– On leading edges from Fay-Riddell

• dependent on Mach, altitude, skin temperature, geometry

– Factors applied for gap heating, cove heating, etc.
– Iteration between Q and T to come to closure
– Uncertainty factor F(time) applied to flux after closure

• Other boundary conditions
– Radiation to atmosphere (changing temperature with descent)
– Contact resistance between parts and across welds
– Radiation within cavities
– All boundary conditions done on geometry to facilitate remesh
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Thermal Analysis Model

66,000 nodes

Brick and tet elements

Mesh density at LE 0.1” x 0.1”

Wing body

C-C leading edge
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Thermal Analysis Model Details

Internal body structure

Weld detail
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Thermal Analysis Model Details

Detail of leading edge mesh
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Flux change across surface
Aeroheating Flux Details

• At each of 18 trajectory
points, the flux across
the surface varies

• These effects must be
combined in the
thermal solver

Flux change with time
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Thermal Analysis Results

Results in °F at 127 s
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Thermal Analysis Results

Results on body in °F at 127 s
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Thermal Predicted Transient
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Thermal Analysis Results

• Two outer emissivities run on body with little difference
– painted ε = 0.8
– unpainted ε = 0.3

• Contact resistance of leading edge varied
– 5E-4 to 5E-3 Btu/in2-s-°F with little effect

• Contact resistance at weld varied
– 0.1 to 1.0 Btu/in2-s-°F with little effect
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Structural Analysis Methods

• Temperatures from thermal analysis interpolated through
MSC/Patran onto structural finite element mesh.

• Analysis performed using MSC/Nastran v70.5.
• Initial linear analysis run for yield assessment.
• Nonlinear analysis performed using temperature-

dependent material properties (elastic modulii and
coefficients of thermal expansion).

• Temperature-dependent stress/strain curves used in
nonlinear solutions for materials experiencing yield.

• Discrete trajectory points analyzed to determine worst
case loads for strain and deflection (not always the
hottest case).

• Strain results evaluated in light of short duration, single
use conditions.

• Deflection results used to specify initial cold clearances.
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Mach 10 Wing Finite Element Model
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Mach 10 Wing Internals
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Thermal/Structural Load Interpolation
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Mach 10 Wing Linear Analysis
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Yield Assessment

• Problem: How extensive is the yielding? Yield stress is a
function of temperature and therefore also a function of
position throughout the wing.

• Determine an approximate relationship between
temperature and yield stress (e.g., piecewise linear), σY(T).

• Using model temperatures for a given trajectory point,
compute the temperature-dependent yield stress at each
node using σY(T).

• Compute the linear Von Mises stress at each node.
• Compute the ratio of Von Mises stress to the temperature-

dependent yield stress at each node.
• Generate a contour plot of the yield stress ratio.
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Mach 10 Wing Yield Assessment
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Mach 10 Wing Nonlinear Analysis
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Typical Stress/Strain Curve for Wing
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Mach 10 Wing Nonlinear Analysis



Nonlinear Thermal/Structural Analysis of Hypersonic Vehicle Hot Structures

NASA LaRC/Lindell/Amundsen/05-18-0032

Mach 10 Wing Nonlinear Analysis
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Conclusions

• Tight integration of aeroheating, thermal, and structural
analyses, each based on full 3-D geometry, was
worthwhile and efficient.

• 3-D analysis captured effects that simpler 2-D analysis
would have missed.

• Deflected shape from structural analysis can be fed back
into aeroheating analysis to assess impact of deformation
on flow and heating characteristics.


